Objective:
To provide a foundational understanding (interpretation and fundamental application) of mechanical drawings using linear tolerancing and GD&T in the design, manufacture and inspection of parts, which have geometric controls applied per ANSI / ASME or other national standards such as ISO.

Course Length:
2 days (16-hours) – 1.6 CEU’s

Course Content:
- **Introduction to Theory and Rules**
 - Rule 1 on features of size
 - Rules 2 & 3 on material condition principles (MMC, LMC & RFS)
 - Comparison of changes between standards
- **Linear Transformation to GD&T**
 - Implications of +/- tolerancing
 - Conversion of square zone to diametral
- **Datums and Datum Features**
 - Datum precedence
 - Planar datum features
 - Datum features of size
 - Inclined datums
 - Partial datum features
- **14 Geometric Symbols**
 - Analysis of symbols and definitions
 - Analysis of tolerance zones
 - Actual mating envelope
 - Supporting symbology
- **Feature Control Frames**
 - Single segment feature control frames
 - Introduction to composite feature control frames
 - 2D analysis of single segment feature control frames
 - Virtual condition principles
 - Beginning levels of 3D analysis
- **Analysis of Measurement Applications**
 - Negative implications of specific measurement procedures
 - Analysis of data from case studies and formula calculations
 - Position calculation exercises and review of general guidelines
- **Global Simplification of GD&T**
 - GD&T boundary comparisons
 - Reduction of symbology (14 symbols down to 3 symbols)

Targeted Audience:
Any individual who must have the ability to “interpret” mechanical drawings using linear tolerancing and GD&T. Any manager with direct or indirect responsibility for product development, manufacturing, quality, customer interaction or supply chain management. Engineers of all technical disciplines, mechanical designers & drafters, mechanical inspectors & technicians, metrologists, machine operators, tool makers and statisticians who analyze data from mechanical components.

Prerequisites:
Introduction to Mechanical Drawings & GD&T